Содержание >> Прикладная математика >> Численные методы >> Алгебраические и трансцендентные yравнения >> Введение

Алгебраические и трансцендентные уравнения - Введение

Введение

Нахождение точных корней алгебраического или трансцендентного уравнения (т.е. уравнения неалгебраического, например, тригонометрического, логарифмического или иррационального) является зачастую достаточно сложной задачей, не решаемой аналитически с помощью конечных формул. Кроме того, иногда на практике уравнение содержит коэффициенты, значения которых заданы приблизительно, так что говорить о точном решении уравнений в таких случаях вообще не имеет смысла. Поэтому задачи приближенного определения корней уравнения и соответствующей оценки их точности имеют важное значение и в наши дни.

Приближенные методы решения уравнений можно условно разделить на графические и численные . Мы ограничимся рассмотрением численных методов решения.

Рассмотрим уравнение:

(1)

где функция F ( x ) – непрерывна и определена на некотором интервале

В ряде случаев потребуется существование и непрерывность первой и второй производных этой функции: , что каждый раз будет оговариваться особо.
Всякое значение , при котором F ( x ) обращается в нуль:

(2)

называется корнем уравнения (1) или нулем функции F ( x ).

Будем считать, что уравнение (1) имеет только изолированные корни, т.е. для каждого корня уравнения (1) существует окрестность, не содержащая других корней этого уравнения. Процесс отделения корней подробно описан в литературе [1, 2] и здесь не рассматривается.

Приближенное нахождение изолированных действительных корней выполняется в два этапа:

1) Нахождение приближенного значения корня – так называемого нулевого приближения .

2) Уточнение приближенного значения корня до тех пор, пока не будет достигнута заданная точность решения, путем итераций или последовательных приближений .

Остановимся подробно на втором этапе, так как нахождение нулевого приближения является специфической задачей, решаемой обычно либо на основе физических соображений или конструктивных особенностей, либо путем графического решения уравнения .


< Предыдущая Содержание Следующая >