Содержание >> Прикладная математика >> Математическая статистика >> Элементы математической статистики >> Числовые характеристики случайных величин

Элементы математической статистики - Числовые характеристики случайных величин

Числовые характеристики случайных величин

Математическое ожидание. Математическим ожиданием дискретной случайной величины Х , принимающей конечное число значений х i с вероятностями р i , называется сумма:

(6 а )

Математическим ожиданием непрерывной случайной величины Х называется интеграл от произведения ее значений х на плотность распределения вероятностей f ( x ):

(6 б )

Несобственный интеграл (6 б ) предполагается абсолютно сходящимся (в противном случае говорят, что математическое ожидание М ( Х ) не существует). Математическое ожидание характеризует среднее значение случайной величины Х .  Его размерность совпадает с размерностью случайной величины.

Свойства математического ожидания:

(7)


Дисперсия. Дисперсией случайной величины Х называется число:

(8)

Дисперсия является характеристикой рассеяния значений случайной величины Х относительно ее среднего значения М ( Х ). Размерность дисперсии равна размерности случайной величины в квадрате. Исходя из определений дисперсии (8) и математического ожидания (5) для дискретной случайной величины и (6) для непрерывной случайной величины получим аналогичные выражения для дисперсии:

(9)

Здесь m = М ( Х ).

Свойства дисперсии:

(10)


Среднее квадратичное отклонение:

(11)

Так как размерность среднего квадратичного отклонения та же, что и у случайной величины, оно чаще, чем дисперсия, используется как мера рассеяния.

Моменты распределения. Понятия математического ожидания и дисперсии являются частными случаями более общего понятия для числовых характеристик случайных величин – моментов распределения . Моменты распределения случайной величины вводятся как математические ожидания некоторых простейших функций от случайной величины. Так, моментом порядка k относительно точки х 0 называется математическое ожидание М ( Х х 0 ) k . Моменты относительно начала координат х = 0 называются начальными моментами и обозначаются:

(12)

Начальный момент первого порядка есть центр распределения рассматриваемой случайной величины:

(13)

Моменты относительно центра распределения х = m называются центральными моментами и обозначаются:

(14)

Из (7) следует, что центральный момент первого порядка всегда равен нулю:

(15)

Центральные моменты не зависят от начала отсчета значений случайной величины, так как при сдвиге на постоянное значение С ее центр распределения сдвигается на то же значение С , а отклонение от центра не меняется: Х m = ( Х С ) – ( m С ).
Теперь очевидно, что дисперсия – это центральный момент второго порядка :

(16)


Асимметрия. Центральный момент третьего порядка:

(17)

служит для оценки асимметрии распределения . Если распределение симметрично относительно точки х = m , то центральный момент третьего порядка будет равен нулю (как и все центральные моменты нечетных порядков). Поэтому, если центральный момент третьего порядка отличен от нуля, то распределение не может быть симметричным. Величину асимметрии оценивают с помощью безразмерного коэффициента асимметрии :

(18)

Знак коэффициента асимметрии (18) указывает на правостороннюю или левостороннюю асимметрию (рис. 2).

Ris2_mat_stat.gif
Рис. 2. Виды асимметрии распределений.

Эксцесс. Центральный момент четвертого порядка:

(19)

служит для оценки так называемого эксцесса , определяющего степень крутости (островершинности) кривой распределения вблизи центра распределения по отношению к кривой нормального распределения. Так как для нормального распределения , то в качестве эксцесса принимается величина:

(20)

На рис. 3 приведены примеры кривых распределения с различными значениями эксцесса. Для нормального распределения Е = 0. Кривые, более островершинные, чем нормальная, имеют положительный эксцесс, более плосковершинные – отрицательный.

Ris3_mat_stat.gif
Рис. 3. Кривые распределения с различной степенью крутости (эксцессом).

Моменты более высоких порядков в инженерных приложениях математической статистики обычно не применяются.

Мода дискретной случайной величины – это ее наиболее вероятное значение. Модой непрерывной случайной величиныназывается ее значение, при котором плотность  вероятности максимальна (рис. 2). Если кривая распределения имеет один максимум, то распределение называется унимодальным . Если кривая распределения имеет более одного максимума, то распределение называется полимодальным . Иногда встречаются распределения, кривые которых имеют не максимум, а минимум. Такие распределения называются антимодальными . В общем случае мода и математическое ожидание случайной величины не совпадают. В частном случае, для модального , т.е. имеющего моду, симметричного распределения и при условии, что существует математическое ожидание, последнее совпадает с модой и центром симметрии распределения.

Медиана случайной величины Х – это ее значение Ме , для которого имеет место равенство: т.е. равновероятно, что случайная величина Х окажется меньше или больше Ме . Геометрически медиана – это абсцисса точки, в которой площадь под кривой распределения делится пополам (рис.  2). В случае симметричного модального распределения медиана, мода и математическое ожидание совпадают.


< Предыдущая Содержание Следующая >